Difference between revisions of "Hurricane HID kit FAQ"

From TechWiki
Jump to navigation Jump to search
Line 40: Line 40:
 
'''The sympton for this is an HID installation that will work from time to time, but will also fail from time to time.'''<br>
 
'''The sympton for this is an HID installation that will work from time to time, but will also fail from time to time.'''<br>
 
To be sure the power isn't dropping too much at startup, you can check the HID installation by hotwiring the system: disconnect the HID power plugs at the car wiring side and run thick wiring (like jumpstart wires) directly to the ballast. Make sure to use a fuse of 15 Amps to prevent anything from literally blowing up! If you have a battery starter pack or a 12V DC Power supply which is rated at 10 Amps you can also use these (would even be easier!) to test the HID's.
 
To be sure the power isn't dropping too much at startup, you can check the HID installation by hotwiring the system: disconnect the HID power plugs at the car wiring side and run thick wiring (like jumpstart wires) directly to the ballast. Make sure to use a fuse of 15 Amps to prevent anything from literally blowing up! If you have a battery starter pack or a 12V DC Power supply which is rated at 10 Amps you can also use these (would even be easier!) to test the HID's.
One tip: the system needs more power to ignite when cold. The chance of not igniting during a cold winter day is bigger then during a hot summer day, so best would be to let the system cool down completely before testing..
+
One tip: the system needs more power to ignite when cold. The chance of not igniting during a cold winter day is bigger then during a hot summer day, so best would be to let the system cool down completely before testing..<br>
 +
There are different ways to solve this issue. Easiest and first to start with is cleaning all connections. There's a wiring loom connector which connects the front clamshell to the main loom. Unplug the connector and use proper contact cleaning spray to clean the contacts. Use a felt tip to dry the contacts and spray them with silicone spray or white grease. Do not use WD40 as this will damage the contacts!<br>
 +
Next stop is the relaybox. Unplug the relays which are switching the headlamps, use contact cleaner spray to clean, dry the contacts and grease them before plugging in the relays.<br>
 +
If the problem stays, please contact us to discuss further options.. (yvo@elise-shop.com)
 +
<br><br>
 
<br><br>
 
<br><br>

Revision as of 09:45, 23 November 2006

As we do get some questions regarding the installation of the Hurricane HID kits from time to time, here is a list of Frequently Asked Questions which might be helpful if you experience any troubles while installing your HID kit.

First of all, it is important to understand what the components of your kit are doing:


The components


The Ballast

This is the small box which is filled with electronics to control the burner. This box contains the power supply for the lamp. At startup, the output voltage will go up to some 20.000 Volts, be carefull not to touch any of the wires / connectors when the kit is powering up! After powering up, the voltage stabilises to a level below 100 Volts. There is a lot of control circuitry to prevent any mishaps. The box will detect if no lamp is connected or if there's any shortcut. It also checks the input voltage; if the voltage drops too low, it will switch off.


The Burner

This is the actual lamp. However, it's not a lamp as you are used to see. Instead of a wire, there's a small gass filled ball which is encapsulated in the glass tube. The ball contains a number of special gasses which control the ignition and determine the colour temperature of the burner. A major portion of these gases is Xenon, hence the name Xenon lamps.
You cannot check a burner by measuring resistance as there is no physical connection between the two leads feeding the burner. By applying a high voltage, the gases inside the small ball will start carrying electrons from one conductor to the other. The side effect of this is the actual light you're seeing...




First line failure analyses



To determine what is wrong, you will need to find out exactly what is happening. Normally, when you power up the HID's, you will hear a high-pitch tone coming from the ballasts. This tone is generated by the high frequency / high voltage generated inside the ballasts. However, when the HID's don't start, you should hear nothing.


If you hear a ballast clicking it means it is generating high voltage but finds an error at the high voltage side.


If the burner does not ignite .and. doesn't flicker, there is something wrong in the connection from the ballast to the burner.
This could be caused by too much tension on the wiring (ballasts fitted too far away from the lamps, wiring broken or connector broken. Best way to investigate is to swap the burner from one side to the other and see if the problem stays. (assuming one side is igniting). If the burner ignites after the swap, you've got to investigate the wiring and connectors of the burner.
If the burner does not ignite but flickers, the burner is probably broken or there's a resistance in one of the wires. Swap the burners from one side to the other and check again. The problem will probably travel to the other side which means the burner is at fault and needs to be replaced.

If you don't hear any sound coming from the ballast, it means it is not generating high voltage. The problem should either be found in the ballast, the connections or the car

First thing to check is if there's any power on the input pins of the ballast. When the lights are switched on, you should measure 12V DC on the input pins. A 'classic' on the Elise S2 is a blown fuse. According to the service manual, both lamps should be equipped with a 15 Amp fuse, yet we found quite a few cars with a 10 Amp fuse.
Although the running power of an HID kit is less then a normal Halogen bulb, the startup current is a lot higher as the high voltage needs to be generated for a short while. This causes the 10 Amp fuse to blow (it's actually very close to 10 Amps, so you might see one side blowing while the other side works without problems!)

If you find 12V DC at the input pins, you need to check the polarisation of the connectors. Although not easy, it is possible to reverse the power connector on the ballast.
You will find two notches on the power receptable of the ballast. One is square and protrudes a lot further then the other one. The lip which is found on the connector should click over the smallest notch. Although the electronics inside the ballast is protected against polarity reversal, the system will not ignite.

A specific problem which we've found on the Elise S1 is voltage drop. The rush-in current caused by the ballast while generating high voltage is quite high. As this current is drawn during a very small period, fuses are not blowing (there is not enough energy to actually blow the fuse). However, wiring on the Elise S1 and Exige S1 has proven to be very thin. Thin wiring and high currents don't combine. If enough energy applied, the wire will light up, but as the ballast only draws this rush in current for a very short period, the wires will cause a resistance in the system. Extra resistance simply means that the voltage will drop. If the voltage drops to a level below 9 Volts DC, the ballast will generate an error and the lamp will not be ignited.
The sympton for this is an HID installation that will work from time to time, but will also fail from time to time.
To be sure the power isn't dropping too much at startup, you can check the HID installation by hotwiring the system: disconnect the HID power plugs at the car wiring side and run thick wiring (like jumpstart wires) directly to the ballast. Make sure to use a fuse of 15 Amps to prevent anything from literally blowing up! If you have a battery starter pack or a 12V DC Power supply which is rated at 10 Amps you can also use these (would even be easier!) to test the HID's. One tip: the system needs more power to ignite when cold. The chance of not igniting during a cold winter day is bigger then during a hot summer day, so best would be to let the system cool down completely before testing..
There are different ways to solve this issue. Easiest and first to start with is cleaning all connections. There's a wiring loom connector which connects the front clamshell to the main loom. Unplug the connector and use proper contact cleaning spray to clean the contacts. Use a felt tip to dry the contacts and spray them with silicone spray or white grease. Do not use WD40 as this will damage the contacts!
Next stop is the relaybox. Unplug the relays which are switching the headlamps, use contact cleaner spray to clean, dry the contacts and grease them before plugging in the relays.
If the problem stays, please contact us to discuss further options.. (yvo@elise-shop.com)